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1 Vectors

1.1 A Scalar and Vector Quantities

The motion of dynamic systems is typically described in terms of two basic quan-

tities : SCALAR and VECTORS.

1.1.1 A Scalar Quantity

A scalar is a physical quantity that has magnitude only such as the mass of

an object. It is completely specified by a single number, in appropriate units. Its

value is independent of any coordinates chosen to describe the motion of

the system.

Examples of scalars include density, volume, temperature, and energy.

1-Its quantity independents on the coordinates system.

2-Its represents by the value only and measurements unit .

3-Mathematically, scalars are treated as real numbers.They obey all the normal

algebraic rules of addition, subtraction, multiplication, division, and so

on.

1.1.2 A Vector Quantity

A vector, however, has both magnitude and direction, such as the displace-

ment from one point in space to another.

1-Its quantity depends on the coordinates system.

2-Its represents by the value and direction .

1
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3-Obeys the parallelogram rules.

1.2 Vector Algebra

In most written work, a distinguishing mark, such as an arrow, customarily des-

ignates a vector, for example,Ā. In this text, however, for the sake of simplicity,

we denote vector quantities simply by boldface type, for example, A.

We use ordinary italic type to represent scalars, for example, A. A given vector A

is specified by stating its magnitude and its direction relative to some arbitrarily

chosen coordinate system. It is represented diagrammatically as a directed line

segment, as shown in three-dimensional space in Figure 1.1.

Figure 1.1: A vector A and its components in Cartesian coordinates.

A vector can also be specified as the set of its components, or projections onto

the coordinate axes.

A = Ax + Ay + Az (1.1)

For example, if the vector A represents a displacement from a point P1(x1, y1,

z1) to the point P2(x2, y2,z2) then its
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Ax = x2− x1

Ay = y2− y1

Az = z2− z1

(1.2)

1.2.1 Equality of Vectors

The two vectors are equal only if their respective components are equal.

A = B

or (Ax, Ay, Az) = (Bx, By, Bz)

Ax = Bx Ay = By Az = Bz

(1.3)

Figure 1.2: Top: Illustration of equal vectors,Bottom:Addition of two vectors .



1.2 Vector Algebra 4

1.2.2 Vector Addition

The addition of two vectors is defined by the equation

A+B = (Ax, Ay, Az) + (Bx, By, Bz)

A+B = (Ax +Bx) + (Ay +By) + (Az +Bz)
(1.4)

The sum of two vectors is a vector whose components are sums of the compo-

nents of the given vectors. The geometric representation of the vector sum of two

nonparallel vectors is the third side of a triangle, two sides of which are the given

vectors.The vector sum is illustrated in Figure 1.2. The sum is also given by the

parallelogram rule, as shown in the figure. The vector sum is defined, however,

according to the above equation even if the vectors do not have a common point.

1.2.3 Multiplication by a Scalar

If c is a scalar and A is a vector,then:

c
−→
A = c(Ax + Ay + Az) = cAx + cAy + cAz =

−→
Ac (1.5)

The product cA is a vector whose components are c times those of A.

Geometrically,the vector cA is parallel to A and is c times the length of A. When

c = —1, the vector —A is one whose direction is the reverse of that

of A,

1.2.4 Vectors Subtraction

−→
A −

−→
B = (Ax −Bx) + (Ay −By) + (Az −Bz) =

−→
C (1.6)

1.2.5 The Null Vector

The vector 0 = (0,0,0) is called the null vector. The direction of the null vector

is undefined. From (IV) it follows that A — A =0. Because there can be no
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confusion when the null vector is denoted by a zero, we shall hereafter use the

notation 0=0.

1.2.6 The Commutative Law of Addition

This law holds for vectors; that is,

A+B = B + A (1.7)

Because Ax +Bx = Bx + Axand similarly for the y and z components.

1.2.7 The Associative Law what its translation in Arabic??

The associative law is also true, because

A+ (B + C) = (Ax + (Bx + Cx), Ay + (By + Cy), Az + (Bz + Cz))

= ((Ax +Bx) + Cx, (Ax +Bx) + Cx, (Ax +Bx) + Cx)

= (A+B) + C

(1.8)

1.2.8 The Distributive Law

Under multiplication by a scalar, the distributive law is valid because, from (1.2.2)

and (1.2.3),

c(A+B) = c(Ax +Bx, Ay +By, Az +Bz)

= c(Ax +Bx), c(Ay +By), c(Az +Bz)

= cA+ cB

(1.9)

1.2.9 Magnitude of a Vector

The magnitude of a vector A, denoted by |A| or by A, is defined as the square

root of the sum of the squares of the components, namely,

A = |A| = (A2
x + A2

y + A2
z)

1/2 (1.10)
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Figure 1.3: Magnitude of a vector A.

where the positive root is understood. Geometrically, the magnitude of a vector

is its length, that is, the length of the diagonal of the rectangular parallelepiped

whose sides are Ax, Ay and Az expressed in appropriate units. See Figure 1.3.

1.2.10 Unit Coordinate Vectors

A unit vector is a vector whose magnitude is unity. Unit vectors are often desig-

nated by the symbol e, from the German word Einheit. The three unit vectors.

Figure 1.4: The unit vectors ijk.

ex = (1, 0, 0) ey = (0, 1, 0) ez = (0, 0, 1) (1.11)
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are called unit coordinate vectors or basis vectors. In terms of basis vectors, any

vector can be expressed as a vector sum of components as follows:

A = exAx + eyAy + ezAz
(1.12)

EXAMPLE (1.1)

Find the sum and the magnitude of the sum of the two vectors A = (1,0,2) and

B=(0, 1,1).

Solution:

Adding components, we have A + B = (1,0,2) + (0,1,1) = (1, 1,3).

EXAMPLE 1.2

A helicopter flies 100 m vertically upward, then 500 m horizontally east, then

1000 m horizontally north. How far is it from a second helicopter that started

from the same point and flew 200 m upward, 100 m west, and 500 m north?

Solution:

Choosing up, east, and north as basis directions, the final position of the first

helicopter is expressed vectorially as A = (100,500,1000) and the second as B =

(200, —100, 500),in meters. Hence, the distance between the final positions is

given by the expression

|A−B| = |((100− 200), (500 + 100), (1000− 500))|m

= 787.4m
(1.13)

1.3 Scalar Product

Given two vectors A and B,the scalar product or ”dot” product, A.B,is the scalar

defined by the equation

A.B = AxBx + AyBy + AzBz (1.14)

From the above definition,

1-Scalar multiplication is commutative(A.B=B.A)

2-It is also distributive(A.(B+C)=A.B+A.C)
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The dot product A. B has a simple geometrical interpretation and can be used

to calculate the angle θ between those two vectors. For example, shown in Figure

1.5 are the two vectors A and B separated by an angle θ, along with an x’, y’, z’

coordinate system arbitrarily chosen as a basis for those vectors.

A.B = |A||B| cos θ

cosθ =
A.B

AB
⇒ θ = cos−1A.B

AB

(1.15)

Figure 1.5: Evaluating a dot product between two vectors.

Note: If A. B is equal to zero and neither A nor B is null, then cosθ is zero

and A is perpendicular to B.)

The square of the magnitude of a vector A is given by the dot product of A

with itself,

A2 = |A|2 = A.A (1.16)

From the definitions of the unit coordinate vectors i,j, and k, it is clear that

the following relations hold

i.i = j.j = k.k = 1

i.j = i.k = j.k = 0
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In addition , we can write any vector associated with its unit vectors by this

form:

A = iAx + jAy + kAz (1.17)

Examples on dot product

Example 1.3.1 Suppose that an object under the action of a constant force un-

dergoes a linear displacement. By definition, the work AW done by the force is

given by the product of the component of the force F in the direction of multiplied

by the magnitude of the displacement; that is,

Figure 1.6: A force acting on a body undergoing a displacement.

4W = (F cos θ)4s (1.18)

where θ is the angle between F and 4s As. But the expression on the right is just

the dot product of F and As, that is,

4W = F.4̇s (1.19)
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Example 1.3.2 Law of Cosines:Consider the triangle whose sides are A, B,

and C, as shown in Figure 1.6.Then C = A + B. Take the dot product of C with

itself,

Figure 1.7: The law of cosines

C.C = (A+B)(A+B)

= A.A+ 2A.B +B.B
(1.20)

By Replacing A. B with AB cos 0 to obtain which is the familiar law of cosines.

C2 = A2 + 2ABcosθ +B2 (1.21)

Example 1.3.3 Find the cosine of the angle between a long diagonal and an

adjacent face diagonal of a cube.

Solution: We can represent the two diagonals in question by the vectors A =

(1, 1,1) and B =(1, 1,0).

cosθ =
A.B

AB
=

1 + 1 + 0√
2
√

3
= 0.8165 (1.22)
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1.4 The Vector Product

Given two vectors A and B, the vector product or cross product, A x B, is defined

as the vector whose components are given by the equation

A×B =

∣∣∣∣∣∣Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (1.23)

A×B = (AyBz − AzBy, AxBz − AzBx, AxBy − AyBx) (1.24)

and

(A×B) = −(B × A) (1.25)

A× (B + C) = A×B + A× C (1.26)

n(A×B) = (nA)×B = A× (nB) (1.27)

According to the definitions of the unit coordinate vectors (Section 1.3), it follows

that

i× i = j × j = k × k = 0

j × k = i = −k × j

i× j = k = −j × i

k × i = j = −i× k

(1.28)

These latter three relations define a right-handed triad. For example, i × j =

(0− 0, 0− 0, 1− 0) = (0, 0, 1) = k

The remaining equations are proved in a similar manner.

In general, the cross product expressed in ijk form is

A×B = (AyBz − AzBy, AxBz − AzBx, AxBy − AyBx) (1.29)

Each term in parentheses is equal to a determinant,

A×B = i

∣∣∣∣∣∣Ay Az

By Bz

∣∣∣∣∣∣+ j

∣∣∣∣∣∣Az Ax

Bz Bx

∣∣∣∣∣∣+ k

∣∣∣∣∣∣Ax Ay

Bx By

∣∣∣∣∣∣ (1.30)
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and finally

A×B =

∣∣∣∣∣∣∣∣∣
i j k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣∣ (1.31)

A×B = ABsinθ (1.32)

Figure 1.8: The cross product of two vectors.
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Example 1.4.1 An Example of the Cross Product:Moment of a Force

Moments of force, or torques, are represented by cross products. Let a force F

act at a point P(x, y, z), as shown in Figure 1.6.1, and let the vector OP be

designated by r; that is,

OP = r = ix+ jy + kz

Figure 1.9: Illustration of the moment of a force about a point 0.

The moment N of force, or the torque N, about a given point 0 is defined as

the cross product:

N = r × F (1.33)

If a single force is applied at a point P on a body that is initially at rest and is

free to turn about a fixed point 0 as a pivot, then the body tends to rotate. The

axis of this rotation is perpendicular to the force F, and it is also perpendicular

to the line OF; therefore, the direction of the torque vector N is along the axis of

rotation. The magnitude of the torque is given by

|N | = |r × F | = rFsinθ (1.34)

in which θ is the angle between r and F. Thus, |N | can be regarded as the product of

the magnitude of the force and the quantity rsinθ, which is just the perpendicular
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distance from the line of action of the force to the point 0.

When several forces are applied to a single body at different points, the moments

add vectorially and the condition for rotational equilibrium is that the vector sum

of all the moments is zero:

∑
i

|r × F | =
∑
i

N = 0 (1.35)

1.5 Triple Products

The expression

A.(B × C) (1.36)

we can see that the scalar triple product may be written as matrix

A.(B × C) =

∣∣∣∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣∣∣∣ = (A×B). ~C (1.37)

H.W: can you prove that ?

Additionally, we can write

~A× ~B × ~C = ~B( ~A. ~C)− ~C( ~A. ~B) (1.38)

which represents the triple cross products .
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1.6 Change of Coordinate System:The

Transformation Matrix

In this section we show how to represent a vector in different coordinate systems.

Consider the vector A expressed relative to the triad ijk:

A = iAx + jAy + kAz (1.39)

Relative to a new triad i’j’k’ having a different orientation from that of ijk, the

same vector A is expressed as

A = íAx́ + j́Aý + ḱAź (1.40)

Now the dot product A.́i is just Ax́, that is, the projection of A on the unit

vector í. Thus, we may write

A = íAx́ + j́Aý + ḱAź (1.41)

Now the dot product is just Ax́ as

A.́i = í.iAx́ + í.jAý + í.kAź (1.42)

So, we can write

Ax́ = A.́i = (i.́i)Ax́ + (j.́i)Aý + (k.́i)Aź

Aý = A.j́ = (i.j́)Ax́ + (j.j́)Aý + (k.j́)Aź

Aź = A.ḱ = (i.ḱ)Ax́ + (j.ḱ)Aý + (k.ḱ)Aź

(1.43)

In similar way, the unprimed components are similarly expressed

Ax = A.i = í.iAx́ + j́.iAý + ḱ.iAź

Ay = A.j = í.jAx́ + j́.jAý + ḱ.jAź

Az = A.k = í.kAx́ + j́.kAý + ḱ.kAź

(1.44)

Either eq. 1.43 or 1.44 can be written as a matrix
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∣∣∣∣∣∣∣∣∣
Ax́

Aý

Aź

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
(i.́i) (j.́i) (k.́i)

(i.j́) (j.j́) (k.j́)

(i.ḱ) (j.ḱ) (k.ḱ)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Ax

Ay

Az

∣∣∣∣∣∣∣∣∣ (1.45)

The above matrix is called a TRANSFORMATION MATRIX.



2 Newtonian Mechanics

2.1 Introduction

The science of mechanics seeks to provide a precise and consisted descripical laws

mathematically describing the motions of bodes and aggregates of bodies. For

this , we need certain fundamental concepts such as distance and time. The

combination of the concepts of distance and time allows us to define the velocity

and acceleration of a particle. The third fundamental concept is mass.

19
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